univariate_forecast
Minimum data periods: 5001 (including forecast).
This function forecasts the continuation of the current directional change over the selected timeframe, based on the identified emergent shift.
Function Parameters
| Parameter | Type | Required | Description |
|---|---|---|---|
data_input | object | True | The univariate time series data to be analysed. This can be a file path (e.g., ‘folder/ohlc_data.csv’) or a pandas DataFrame. Supported file formats include CSV, TSV, Parquet, Excel, JSON, and HTML. |
interval | int | True | The frequency of the time series data. Use in conjunction with interval_unit. |
interval_unit | string | True | The unit of time for the interval. Accepts one of the following values: ‘seconds’, ‘minutes’ and ‘days’. |
reasoning_mode | string | True | The reasoning strategy the algorithms use to make decisions: ‘proactive’ acts early with minimal information while ‘reactive’ waits for sufficient evidence before acting. |
Data Columns
Your input data (file or DataFrame) must contain the following columns:- datetime (string): A timestamp for each data point.
- value (float): The numerical value for the interval.
Example Data Format for Univariate Time Series
A placeholder value of 0 is required in the input fields for the forecasted period (e.g. 2025-08-19 at 17:00 in the example below).| # | datetime | value |
|---|---|---|
| 1 | 2025-01-23 09:00:00 | 100 |
| 2 | 2025-01-23 10:00:00 | 95 |
| … | … | … |
| 5001 | 2025-08-19 17:00:00 | 0 |